

MIDAS

Monetizing Innovative Disposal Applications and Solutions

Webinar for November 7/8 Workshop

Douglas Wicks Program Director ARPA-E, Department of Energy

Let's talk trasn. CREDIT: MyPlate.gov

MSW is Surrounded by Seismic Changes

Take Some Time to Ponder – Where does it go?

- Curbside Trash Pickup
 - Contains literally everything (and maybe a kitchen sink)
 - Large amount of recyclables
- Curbside "Recycling"
 - Poor customer compliance
- All waste takes a long road trip to its final destination.

Please NOTE!

- Recovery of energy from waste IS part of the EPA's hierarchy of waste handling.
- ► The intent of this program is to increase resource recovery while enhancing recycling and eliminating disposal.
- Metrics for the program will address
 - Energy
 - Environment
 - Economics

Disposition of MSW in US

- Landfilling is the primary method
 - Volumes "flat"
 - Cost increasing rapidly
- "Recycling" has increased
 - About 1/4th composted
 - About 1/3rd of remainder was exported
- ► WTE Flat for 30 years

Please note that there are wide ranging estimates of MSW in US EPA numbers represent reported MSW collection

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

Issues with Landfilling

- Wasted Embodied Energy
 - US > 2 quadrillion Btu's of thermal energy
- ► GHG Emissions
 - 3rd largest source of methane even with abatement
 - Biogenic CO2
 - NOx
- Other
 - 30 million tons of metals
 - 50 million tons of inorganics
 - Water runoff
 - Active biology community

Changes to the Construction Area

eia

Supplementary Cementitious Material (SCM)

- Coal fly ash and steel slag are critical to high performance construction materials
- ▶ Both of these wastes are in decline

Note: Labels show percentage share of total generation provided by coal and natural gas. Source: Short-Term Energy Outlook, October 2019

2016 U.S. Cement Industry Annual Yearbook
http://www2.cement.org/econ/pdf/Yearbook2016_2sided.pdf

CHANGING WHAT'S POSSIBLE

Challenges Facing W2E Operations

- Dropping Electricity Value
 - Deregulated electricity markets
 - Rapid penetration of renewables disrupting baseload needs
- Combustion Residue Disposal
 - Landfill tipping fees
 - Logistics
 - Liability
- Community Perception

MSW -> Energy in the US

- Currently 71 plants*
- Generating 15 billion kwh
 - Equivalent to 120 trillion btu's of natural gas generation **
 - Some a dedicated to steam production
- Reductions resulting from combustion
 - 90% in volume
 - 70% in mass

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

Global Benchmarks

The US is

- Behind on addressing MSW
- ▶ 2nd total MSW Generation
- ► 22nd per capita MSW* (but math is not our strength)
- Lagging in landfill avoidance

http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/AnnexJ.pdf

Lessons from the Leaders

- Waste to energy does not preclude effective recycling and composting
- Effective recycling does not alleviate the need for additional disposal methods

Bunge – Metals_from_MWIBA.pdf

Garbage In, ____ Out

Energy

1 Ton

Combustion Residue 1/5th -1/3rd Ton

What Contributes to Combustion Residue?

- Wood and food waste
 - Silica, K, Ca, Mg, Na, P, Cl
- Fillers in paper and board
 - CaCO₃, Aluminosilicates
- Plastics, paint
 - CaCO₃, Silicates, TiO₂, Zn
- Glass
 - Silica from fibers
- Kitty litter
 - Aluminosilicates, silicates, and...
- PVC
 - Chlorides, CaCO₃
- Bricks, tiles, construction debris, rocks...
- Cylinders, pipes, fixtures...
- Electronics...

MSW and ARPA-E's Mission

Mission: Development of applications and solutions that ...

Outcomes to Explore

- Can we eliminate need for landfill?
- What is the optimum mix to pursue?
 - Recycle
 - Reuse
 - Energy Recovery
- What is the optimum use of the embodied energy?

MSW Conversions – What is ARPA-E Hard?

Understanding Using the the Chemical Energy Waste Stream Waste 2 Valorizing the **Exploring** What can be Residues and Added Flue Gas

MSW Conversions – Two time horizons

- Existing Assets
 - Average 30 years old
 - Extensive refits
 - Designed for a different business and regulatory environment

- Next Generation
 - Combination of approaches based on local needs
 - Designed for full conversion

MODEL 1: WTE (combustion with energy recovery)

MODEL 2: WTE with up-front additives

MODEL 3: Combustion Heat Utilization

(no power generation)

MODEL 4: Gasification for Cement Production

Understanding the Waste Stream

- What are methods to Characterize, Classify, Partition?
 - Al and machine recognition
 - Connecting back to pick up schedules
 - Selective removal before energy recovery
 - Recyclables, unwanted contaminants
 - Monetizing the data
- Recycle vs Combustion vs Gasification vs ?
- What wastes beyond municipal should be discussed?

Exploring What can be Added

- What additional materials can be fed to the combustion/gasification process?
 - Benefits to combustion residue?
 Aggregates?
 - Impact on energy recovery?
 - Methods for dynamically changing feed rate(s)?
- Are there upfront additives that would benefit combustion and emissions?
 - Reduced slagging, NOx, halogens
- What about shifting to gasification?

Valorizing the Residue

- What are the best practices in the industry for combustion residue reuse?
- What rapid, in line analytical tools can be used to characterize combustion residues?
- What can we learn from coal combustion residues?
- Can we cleanly separate critical materials out for recycle?

Ash "Distillation"

Throughout the Meeting

- Listen, participate
- Ask the complex and simple questions
- ► Think about the big picture and interactions
- Network and meet new people Solutions will require teams

